West Manheim Township Groundwater Survey

 

_____________________________________________________________

 

    Information is posted here on the results of a well survey project involving Jones Geological Services (JGS), United States Geologic Survey (USGS) and York County Conservation District (YCCD).  

 

    The survey's goals are to establish a basic idea of the water table in West Manheim Township.  With the use of staff and volunteers, approximately 60 wells were inventoried in early August.  The three teams visited selected wells measuring the depth to the static water level.  Selected wells received water quality tests including specific conductance, pH and metals tests.  Results were presented to the Board of Supervisors in November.  

 

    JGS, USGS and YCCD want to thank the property owners who graciously allowed us to access their wells.  We would also like to thank the volunteers who spent two days in the heat collecting this data.

_______________________________________________________________________________________________

 

Go Directly to MAPS

 

Go Directly to Geological Society of America Abstracts concerning the Township

 

Go Directly to Database

 

__________________________________________________________________________________________________________

 

Below is the report written by Jeri Jones and Kathrlyn Low about the project's findings and recommendations:

Introduction

In March, 2005, a cooperative proposal from the United States Geological Survey (USGS) and Jones Geological Services (JGS) was presented to the West Manheim Township Board of Supervisors. This 2005 study was an extension of a preliminary study by Jeri Jones in 2003. The 2003 study was a compilation of wells within the region and a general look at the geology and ground-water resources as reported by other investigators. Through a recommendation of the report, a more detailed study of wells within West Manheim Township (Township) was proposed. This report and the associated CD present the results of the 2005 study.

 

Acknowledgements

The investigators are grateful to the West Manheim Township Board of Supervisors for accepting the project. The project could not have been conducted without the assistance of Dennis Low of the USGS and his daughter Kathryn. Kathryn Low chose to participate in this study as a 2006 Susquenita High School science fair project. Dennis and Kathryn dedicated many hours to this project. Gary Peacock of the York County Conservation District (YCCD) provided vital field support in locating and surveying wells. Gary was also the volunteer coordinator for this project. Tim Pfaff of West Manheim Township made available drilling records and field experience. Township residents Robert Eckenrode and Deborah Maisli spent the two days of August 5 and 6, 2005 collecting water-level and water-quality data with the teams. Barry Stump of the Codorus Creek Watershed Association also assisted in the data collecting on August 5 and 6, 2005. The York County Planning Commission provided GIS coverage for the project.  Township resident Connie Martz contributed contact names who may be interested in participating in the well survey.

 

Method of Study

The main goals for the project were 1) locate and survey a minimum of 50 wells and springs to compile a potentiometric or water-table map; 2) conduct field (pH, specific conductance) water-quality measurements on selected wells or springs; 3) build a database that included information on wells drilled within the Township; 4) determine if the different lithologies influenced well yields; and, 5) determine if there are any areas of low well yields.

 

Well Inventory

In May, 2005, the USGS, YCCD and JGS began to locate wells and secure permission for later inventory and site visits. Wells were chosen either based on geographic location, having a driller’s card on file and/or contacts from friends. It should be noted, that areas within the Township being served by public water were not included in the well inventory. Also, it was discovered that few wells existed on property denoted as conservation lands. This limited the geographical coverage of the study.

As wells were selected, latitude and longitude, property owner information, history of drought information and other problems were obtained and recorded. Several wells outside of the Township were inventoried. These wells were included as they 1) provided additional control to the water-table map; 2) were located on a point of geologic interest; or 3) were part of a proposed housing development.

On evening of June 28, 2005, a volunteer meeting was held. This gathering was designed to introduce the project to any Township residents interested in assisting in the well inventory and provide an update to Township officials regarding the progress of the study. A visit to an area well to demonstrate how to measure water levels was also held.

Wells were inventoried on August 5 and 6, 2005 throughout the Township. Three teams were setup. Gary Peacock, Dennis Low, and Jeri Jones were team leaders. Home owners who were willing to have their well or spring included were contacted in advance and appointment times assigned. Static water levels were recorded and water samples collected from about 80 sites. Water samples were measured at the Township office by Kathryn Low for pH and specific conductance. About 35 samples were also packaged and transported to Dickinson College for analysis of selected metals

 

Database Building

Beginning in May, 2005, water-well driller records on wells within and near the Township were gathered. The following sources were used to gather this information:

Township permits and records

Pennsylvania Ground Water Information System database (Pennsylvania Topographic and Geologic Survey)

Ground-Water Site Information database(United States Geologic Survey)

Codorus State Park well records

All information was transferred into an Excel database and is included on the accompanying CD. A total of 422 water-well driller cards were recorded and utilized in evaluating well depth, casing length, depth to bedrock, yield, specific capacity. However, less than 40 percent (164 wells) were determined to have locations accurate enough to be plotted on a digital map.

 

General Geology

Metamorphic rocks underlie much of the Township. The Marburg Schist underlies about 90% of the Township. This unit is composed of a bluish-gray to silvery-green fine-grained schist. Within the Marburg Schist are quartzites and slate members. Stose and Stose (1944) mapped these separate from the schist. The quartzite member underlies the higher elevations within the southern portion of the Township. The quartzite is a green schistose, ferruginous quartz conglomerate with rounded fragments of quartz and slate with muscovite partings.

The slate member is a gray-to-black smooth splitting slate closely associated with the quartzitic layers.

Underlying the northwestern corner of the Township is the Harpers Formation. The Harpers Formation is a dark gray-to-green quartzose phyllite. Minor occurrences of quartzite have been observed within the Harpers Formation.

Two other rock units within the Township are the Antietam and Conestoga Formations. On the southern slope of Lake Marburg near Black Rock Road is a small exposure of the greenish-gray granular ferruginous quartzite belonging to the Antietam Formation. Underlying Lake Marburg is the Conestoga Formation which consists of a thin-bedded dark limestone.

A small diabase dike occurs in the western portion of the Township. This igneous rock intrudes the Marburg Schist and Harpers Formation. Fragments of diabase are seen on the surface near the corner of Grand Valley Road and Leppo Mill Road and along Beck Mill Road near Fairview Drive.

 

Bedrock and Ground Water

Metamorphic rocks like the Marburg Schist have no primary porosity or primary pore space (unlike sand or gravel deposits). This has been eliminated by a history of heating and pressure which formed differing minerals and textures and eliminated voids by compaction and re-crystallization (metamorphism). Tectonic processes (mountain building) created many secondary openings such as fractures, faults, and voids and, at the same time, locally sealed some of these features.

Despite a complex history, the Township’s bedrock aquifers can be viewed from a broad hydrologic perspective. Water moves through, and is stored in, open fractures, faults, voids, joints, and bedding planes. The size, number, and distribution, and degree of interconnection of these secondary openings are highly variable. When present, water-bearing zones generally decrease in size and number with depth. In the Township wells typically penetrate only two water-bearing zones and over half of the water-bearing zones are penetrated by a depth of 90 feet. Thus, the overall storage capacity of bedrock is small and tends to decrease with depth.

The Marburg Schist is one of the lowest yielding aquifers in Pennsylvania. Wells that penetrate bedrock in the Township, however, can yield dependable supplies of water suitable for single-family domestic needs. The median yield of the Marburg Schist in the Township is 5 gallons per minute. Zones where bedrock is extensively fractured may yield larger quantities of water.

 

Because ground-water flow processes in fractured crystalline bedrock are complex, developing a more complete understanding of these processes is difficult. In general, ground water is stored in the overlying soil and weathered bedrock (regolith) and migrates slowly over time into the fractured bedrock where it is stored in secondary openings. Much of this water flows from hilltops to valleys where it is released as springs. A well penetrating this flow system acts as a short cut, and the water will commonly rise within the well. If a sufficiently large number of wells exist and the depths to water are measured, then a pressure or potentiometric map can be created that provides a general idea of ground-water flow. This is what most of the effort on August 5 and 6, 2005 was directed towards.

 

Poteniometric (Water Table) Map

In general, the potentiometric map shows that water table is a smoothed reflection of the topographic surface. The poteniometric map suggests also that ground-water flow paths are probably shallow and that water moves fairly rapidly from hilltop to valley bottom.

The water contour lines have an interval of 20 feet. The closer the lines are together, the steeper the ground water level is. Depth to water is greater on hilltops than in valleys. In general, depth to water on hilltops averages about 30-40 feet below land surface. In valleys and upland draws, depth to water averages about 10-20 ft below land surface. At least four wells had deeper than expected depths to water. These wells were probably just recently pumped prior to or during measurement.

Numerous red lines on the map represent lineaments. Lineaments are features identified from high altitude aerial photographs that may represent fractures in the bedrock or man-made features such as fence rows. In some cases, the orientation of lineaments reflects the structural geology of the area. Although some lineaments appear to reflect the topography and geology, there are no patterns that seem to dictate the flow of the ground water.

This map can not be used to predict how much water will be found or where to find water, again, due to the unpredictable behavior of ground water in metamorphic rocks.

 

What Was Determined?

Two areas with limited yields were tentatively identified. The areas are along Pa. Rte. 94 between The Mason-Dixon Line and Pleasant Hill and in the vicinity of the intersection of Frogtown Road and Musselman Road.

The median depth to water-bearing zones is 87 feet. The minimum depth is 5 feet and the deepest is 380 feet.

Median depth to bedrock is 14 feet with a maximum of 145 feet and minimum of 1 foot.

Median yield is 5 gal/min with a maximum of 100 gal/min.

High-yielding wells (+10 gal/min) can be located next to low-yielding wells (< 3 gal/min).

Water levels in wells range from a minimum of 2 to 124 feet below land surface.

Water levels can vary within a short distance and are affected by topography.

Ground-water flow paths appear to be relatively shallow.

Borehole storage (water sitting in the well bore) is an important resource for about 50 percent of the wells.

About half of the wells sampled contain water with a pH below the U.S. Environmental Protection Agency range of 6.5 – 8.5. This suggests aggressive water can be a major problem.

Well drillers like to set casing in 20-foot lengths. However, depth to bedrock also significantly affects the amount of casing used.

 

What Was Not Determined?

The affects of lithology on well yield.

The affects of lithology on pH and specific conductance.

Spatial trends or patterns in depth to bedrock, water-bearing zones, or well depth.

Spatial trends or patterns in yields or specific capacity.

Areas where high-yielding wells can be consistently found.

Association of lineaments to well yield or specific capacity.

More specific information can be found on the CD and attached tables.

 

High Priority Recommendations

As found in many municipalities, ground-water statistics, permitting and record keeping is a low priority. The Township made a major advancement during the summer of 2005 when they established an ordinance for obtaining well permits. During the preliminary work of compiling drilling cards and consultant reports, a large amount of time was spent verifying the location of wells. Out of 422 wells placed into the database, 164 were determined to have acceptable spatial coordinates so that the well could be visited and a latitude and longitude determined with an accuracy of 0.1 to 3 seconds.

The following are some recommendations that should be considered:

All wells should be visited by a Township official and verified via Global Positioning System.

All wells should have an aquifer test (pump the well at a known (i.e. measured) and suitable rate and measure the decline in water level) during which the Township official is present and takes notes.

All wells should have a minimum of water-quality done (bacteria, nutrients, some metals).

No well is approved until driller cards are in hand, engineer and hydrologist reports are in hand, and water-quality results are complete.

The Township should charge a $100 fee for the visit and associated paper work and filing. The water quality test should be charged to the developer/builder and sent to a USEPA/PADEP approved laboratory.

With the rapid developmental growth within the area, it is suggested a minimum well yield of 2 to 3 gal/min for any newly constructed well may be instituted.

If borehole storage [specific capacity is <0.03 (gal/min)/foot of drawdown represents a large component of flow from the well, additional storage should be constructed. This may be in the form of a deeper well or surface storage tank

The above suggestions are made to improve the record-keeping of the wells within the Township and to provide minimum standards to Township residents.

A secondary purpose of this study was to implement a volunteer corps who would go into the Township to take similar well readings in the future. A similar study may be conducted in 2007 in the same wells to measure the difference in water levels over time and collect some water quality data.

Equipment needed and purchased by the Township to meet the suggested recommendations would include:

At least one, and preferably two e-tapes to obtain water levels (cost per unit is ~ $500.

At least one, preferably two GPS units to record the latitudes and longitudes of well locations (cost per unit is ~ $225.

The above equipment should be purchased for a Township staff person to locate and inspect new wells as indicated above.

 

Other Recommendations

For further consideration, these points are suggested:

Install a monitoring well in a protected area where water levels can be measured on a weekly basis or placed online to collect data. A suggested location would be in the Sheppard-Meyers Reservoir area.

Implement a volunteer water quality test where residents would submit samples to a responsible party (Township or consultant) who would forward samples to a laboratory for bacteria and metals.

Establish a ground-water quality network

Hire a consultant or train Township personnel to conduct water-quality sampling and monitor aquifer tests.

 

Further Reading

Fleeger, G.M., 1999.  The Geology of Pennsylvania’s Groundwater.  Pa. Geol. Survey, 4th ser., Educational Ser. 3.

Fleeger, G.M., McElroy T.A., and Moore, M.E., 2004.  Hydrogeologic and well-construction characteristics of the rocks of Pennsylvania.  Pa. Geol. Survey, 4th ser., Water Res. Rept. 69.

Jones, J.L., 2003.  A preliminary look at the groundwater in West Manheim Township, York County, Pennsylvania.

Lloyd, O. B., and Growitz, D. J., 1977. Groundwater resources of central and southern York County, Pennsylvania. Pa. Geol. Survey, 4th ser., Water Res. Rept. 42.

Low, D.J., and Conger, R.W., 2002.  Ground-water availability in part of the Borough of Carroll Valley and the establishment of a drought-monitoring well.  U. S. Geol. Survey Water. Res. Rept.02-4273.

Low, D.L., and Dugas, D.L., 1999.  Summary of hydrogeologic and ground-water quality data and hydrogeologic framework at selected well sites, Adams County, Pennsylvania.  U.S. Geol. Survey Water Res. Investigations Rept. 99-4108.

Low. D.J., Hippe, D.J., and Yannacci, D., 2002.  Geohydrology of southeastern Pennsylvania.  U S. Geol. Survey Water Resources Invest. Report 00-4166.

Moore, J.E., Zaporozec, and Mercer, J.W., 1995. Groundwater – A Primer. American Geologic Institute Awareness Series: 1. Washington, D.C.

Stose, A.J., and Stose, G.W., 1944. Geology of the Hanover-York District Pennsylvania. U.S.G.S. Professional Paper 204.

Stose, G.W., 1932.  Geology and mineral resources of Adams County, Pennsylvania.  Pa. Geol. Survey, 4th ser., County Report 1.

Stose, G. W., and Jonas, A. I., 1939. Geology and mineral resources of York County, Pennsylvania. Pa. Geol. Survey, 4th ser., Bull. C 67.

Taylor, C.J,. and Alley, W.M., 2003.  Groundwater level monitoring and the importance of long=term water level data.  U.S.G.S. Circular 1217.

Taylor, L.E., and Royer, D.W., 1981.  Summary groundwater resources of Adams County, Pennsylvania.  Pa. Geol. Survey, 4th ser., Water Res. Report W 52.

Taylor, L.E., and Werkheiser, W.H., 1984.  Groundwater resources of the Lower Susquehanna River basin, Pennsylvania.  Pa. Geol. Survey, 4th ser., Water Res. Report W 57.

____________________________________________________________________________________________

Abstracts

Below are two abstracts that were presented at the Geological Society of America's Northeastern Section meeting in March, 2006. These two abstracts outline the results of the survey.

 

Availability and Field Water-Quality of Ground Water in the Marburg Schist in West Manheim Township, York County, Pennsylvania – Low, Dennis J., U.S. Geological Survey, Low; Kathryn K., Susquenita High School; Jones, Jeri L., Jones Geological Services; Peacock, Gary, York County Conservation District.

Current population growth of about 5 percent per year in West Manheim Township (Township) coupled with recent droughts has led Township officials to undertake an effort to evaluate the capability of the bedrock aquifers to meet future, water-resources needs. Availability of ground water in the Township is limited by the physical characteristics of the underlying bedrock and its upland topographic setting. The Marburg Schist, which underlies approximately 90 percent of the Township, is one of the lowest yielding aquifers in the Commonwealth. About 25 percent of the wells in the Marburg Schist have driller reported yields of 2 gallons per minute (gal/min) or less, and 50 percent of the wells have specific capacities of 0.09 (gal/min) per foot of drawdown or less, indicating borehole storage contributes significantly to driller reported yields. Driller reports also indicate water-producing zones are shallow and few in number. In general, 50 percent of the water-producing zones are penetrated by a depth of 87 ft and 90 percent by a depth of 183 ft. Nonparametric tests (Spearman) indicate strong inverse correlation between well depth and yield (-0.71) and well depth and specific capacity (-0.66). Field measurements of pH and specific conductance indicate that water in the Marburg Schist is slightly acidic and relatively low in dissolved solids. Approximately 50 percent of the wells sampled contained water with a pH less than the U.S. EPA secondary drinking water regulation of 6.50. Specific conductance ranged from 80 to 1,720 microsiemens per centimeter (uS/cm), the median was 187 uS/cm.

 

 

 

PROBLEMS ENCOUNTERED AND RECOMMENDATIONS MADE DURING A GROUND-WATER SURVEY WITHIN THE MARBURG SCHIST IN WEST MANHEIM TOWNSHIP, YORK COUNTY, PENNSYLVANIA.  JONES, Jeri L., Jones Geological Services, 276 North Main Street, Spring Grove, PA  17362, JLJ276@aol.com, LOW, Dennis J., U. S. Geological Survey, 215 Limekiln Road, New Cumberland, PA 17070, djlow@usgs.gov, LOW, Kathryn K., Susquenita High School, and Peacock, Gary R., York County Conservation District

West Manheim Township (Township) is in southwestern York County, Pa., and is within the Piedmont Physiographic Province, Piedmont Uplands Section, where it is underlain predominantly (90 percent) by the Marburg Schist.  Because of its proximity to major metropolitan centers, the Township faces rapid development and growth - an estimated 4,000 new homes are projected in the next 5 years.  With only 30 percent of households using public supplies, much of the water needs must be met through private domestic wells.  The availability of ground water in the Township, however, is uncertain.  Homeowners commonly have described the need for drilling two, three, and in some cases, six wells before a suitable yield was established.  To better evaluate the potential of the Marburg Schist to met projected water demands, the Township initiated a ground-water study in February 2005.  As an initial step in the study, 422 well-driller cards and/or consultant reports from local, state, and Federal databases were examined.  A total of 164 wells (39 percent) were determined to have satisfactory spatial coordinates of 0.1 to 2 seconds latitude and longitude (based on site visits, street addresses, parcel or lot numbers, and/or driller maps) to accurately plot the wells on existing digital (topography, geology) coverages. The remaining 258 wells could only be roughly located (3 to +30 seconds latitude and longitude or 200 to +3,000 feet) but were nevertheless assigned to the Marburg Schist because of the predominance of this aquifer in the Township. Although all 422 wells were used to evaluate the Marburg Schist, significant hydrogeologic information (for example: effects of topographic setting, lineaments, and lithology on yields; distribution of well yields; and depth to bedrock) could not be obtained from 60 percent of the examined databases. This lack of adequate data coverage thus prevented an adequate assessment of spatial variation or trends in well yield and specific capacity. As a result, several recommendations were presented to the Township to improve their collection of well data including (1) purchase and utilize a Global Positioning System to obtain proper spatial coordinate data for each well, (2) visit sites to obtain static water levels after well completion, (3) perform minimum 1-hour drawdown tests with measurement of discharge volume, and (4) develop an electronic database for well-driller records.

________________________________________________________________________________________________________

What is SWL?  It stands for Static Water Level or in more understandable terms, the depth below the surface where water is first recorded.  

SWL Depth (Feet)

Harpers Fm.

Marburg Schist

Marburg Quartzite

Marburg Slate

0 (Springs)

0

8

1

0

1-10

1

4

1

0

11-20

1

7

0

0

21-30

0

10

0

3

31-40

0

18

2

1

41-50

0

7

1

0

51-60

1

4

0

0

61-70

0

2

0

0

71-80

0

1

0

0

81-90

0

1

0

0

91-100

0

0

0

0

101-110

0

0

0

0

111-120

0

0

0

0

121-130

0

1

0

0

Totals

3

63

5

4

Wells Surveyed with Static Water Level Depth Range

Well Number

SWL (feet)

Well Number

SWL (feet)

SP 29

Spring

SP 30

Spring

SP 31

Spring

SP 32

Spring

SP 33

Spring

SP 34

Spring

YO-1295

5.45

YO-1297

51.10

YO-1228

6.64

YO-1273

11.88

YO-1247

11.95

YO-1227

13.00

YO-1246

13.85

YO-1294

14.85

YO-1296

34.98

YO-1239

22.18

YO-1279

4.82

YO-1256

23.10

YO-1272

23.35

YO-1232

24.24

YO-1259

25.25

YO-1286

33.00

YO-1226

27.79

YO-1270

29.30

YO-1263

30.50

YO-1257

32.01

YO-1299

32.30

YO-1234

32.87

YO-1249

33.58

YO-1268

34.71

YO-1298

76.45

YO-1300

35.10

YO-1302

45.95

YO-1244

35.90

YO-1285

27.00

YO-1251

36.20

YO-1251

36.20

YO-1230

36.90

YO-1301

35.80

YO-1233

37.51

YO-1241

37.80

YO-1242

39.86

YO-1274

40.97

YO-1261

41.10

YO-1281

38.70

YO-1269

43.19

YO-1275

43.88

YO-1238

46.50

YO-1266

47.42

YO-1260

50.20

YO-1237

53.35

YO-1255

57.88

YO-1245

59.15

YO-1287

60.73

YO-1252

65.80

YO-1229

69.80

YO-1262

89.25

YO-1240

123.67

Wells within the Marburg Schist Listed Chronologically

Well Number

SWL (feet)

Well Number

SWL (feet)

SP 36

Spring

YO-1243

5.90

YO-1267

18.90

YO-1283

32.53

YO-1284

36.04

Wells within the Marburg Quartzite Listed Chronologically

 

 

Well Number

SWL (feet)

Well Number

SWL (feet)

YO- 1254

21.50

YO-1291

23.00

YO-1231

24.57

YO-1264

34.00

Wells within the Marburg Slate Listed Chronologically

 

Well Number

SWL (feet)

Well Number

SWL (feet)

YO- 1271

2.00

YO-1253

14.00

YO-1258

57.00

Wells within the Harpers Formation Listed Chronologically

Well Number

2005 SWL (feet)

Drilled SWL (feet)

Difference in SWL (feet)

YO-1225

15.32

15.00

0.32

YO-1227

13.00

13.00

-----

YO-1228

6.64

6.00

0.64

YO-1230

36.90

67.00

-30.10

YO-1231

24.57

40.00

-15.43

YO-1236

76.55

57.00

19.55

YO-1237

53.35

51.00

2.35

YO-1238

46.50

60.00

-13.5

YO-1239

22.18

20.00

2.18

YO-1240

123.67

28.00

95.67

YO-1241

37.80

71.00

-33.20

YO-1242

39.86

39.86

-----

YO-1243

5.90

4.00

1.90

YO-1244

35.90

62.00

-36.10

YO-1249

33.58

68.00

-34.42

YO-1250

36.30

30.00

6.30

YO-1252

65.80

54.00

11.80

YO-1255

57.88

30.00

27.88

YO-1256

23.10

23.00

0.10

YO-1259

25.25

30

-4.75

YO-1260

50.20

37.00

13.20

YO-1261

41.10

50.00

-8.90

YO-1273

11.88

12.00

-0.12

YO-1285

27.00

58

-31.00

YO-1301

35.80

36.60

-.80

YO-1302

45.95

47.45

-1.50

YO-1300

35.10

37.70

-2.60

Comparison for SWL between 2005 Survey and Driller’s Cards

 

MAPS

(click on maps to enlarge)

 

wpe2.jpg (9286 bytes)         wpe5.jpg (14928 bytes)     wpe7.jpg (42239 bytes)     wpe9.gif (6698 bytes)     wpeB.jpg (16594 bytes)     wpeD.jpg (13395 bytes)

      #1                                   #2                           #3                         #4                            #5                            #6

 

#1 - Location of West Manheim Township in York County, PA

#2 - Geologic Map showing well locations

#3 - Poteniometric Map

#4 - Depth to water chart for all wells surveyed

#5 - Well yields of all wells surveyed

#6 - Depth to bedrock all of wells surveyed

 

 

wpe2.jpg (14606 bytes)      wpe5.jpg (15790 bytes)      wpe7.gif (4168 bytes)      wpe11.gif (6724 bytes)     wpe15.gif (6574 bytes)      wpe17.gif (4586 bytes)  

        #7                              #8                           #9                             #10                         #11                           #12

 

#7 - pH of wells tested

#8 - Specific conductance

#9 - Maximum depth of water-bearing zones vs. # of wells

#10 - Yield vs. maximum depth of water-bearing zones

#11 - Well depth vs. yield

#12 - Well depth vs. # of wells

 

 

_____

 

USGS Number WMT Number SWL pH SC TOPO AQUIFER LITHO DATUM LAT LONG CASING WELL WBZ 1 WBZ 2 WBZ 3 WBZ 4 WBZ 5 DSWL BEDROCK DRILLER YIELD SpecCap
YO   263 YO   263 390 W 377HRPR NAD27 39 76 19 89 50 84 20 12 Kohl Bros 6 0.11
YO   264 YO   264 7.6 100 S 300MRBG NAD27 39 76 21 140 59 118 8 9 Mummert and Sterner 3
YO   265 YO   265 7.8 360 H 300MRBG NAD27 39 76 21 145 118 48 19 Mummert and Sterner 3
YO   266 YO   266 6 180 H 300MRBG NAD27 39 76 41 160 58 97 47 37 Mummert and Sterner 9 0.53
YO   267 YO   267 120 W 300MRBG SLATE NAD27 39 76 28 170 69 14 12 Mummert and Sterner 6 0.04
YO   268 YO   268 265 S 300MRBG NAD27 39 76 15 160 40 151 28 14 Mummert and Sterner 4 0.04
YO   269 YO   269 6.5 175 W 300MRBG NAD27 39 76 27 200 106 173 58 24 Mummert and Sterner 6 0.04
YO   270 YO   270 185 W 300MRBG NAD27 39 76 60 140 79 123 19 54 Mummert and Sterner 5 0.03
YO   271 YO   271 H 300MRBG NAD27 39 76 20 120 76 103 51 12 Mummert and Sterner 6 1.21
YO   288 YO   288 V 300MRBG SLATE NAD27 39 76 17 41 25 38 5 Kohl Bros 10
YO   289 YO   289 S 300MRBG NAD27 39 76 20 120 74 34 3 Mummert and Sterner 7
YO   290 YO   290 W 300MRBG NAD27 39 76 41 160 94 130 50 39 Mummert and Sterner 7
YO   305 YO   305 H 377HRPR NAD27 39 76 63 165 152 40 60 Mummert and Sterner 3
YO   306 YO   306 H 377HRPR NAD27 39 76 40 100 70 93 40 35 Mummert and Sterner 9
YO   307 YO   307 H 300MRBG NAD27 39 76 26 125 68 34 19 Mummert and Sterner 5
YO   308 YO   308 S 377HRPR NAD27 39 76 31 109 44 66 36 30 Reichart 20
YO   309 YO   309 H 377HRPR NAD27 39 76 21 140 120 25 16 Mummert and Sterner 5
YO   310 YO   310 S 300MRBG NAD27 39 76 41 100 59 88 30 37 Mummert and Sterner 10
YO   311 YO   311 S 300MRBG NAD27 39 76 44 160 141 28 40 Mummert and Sterner 2
YO   336 YO   336 H 377HRPR NAD27 39 76 40 100 78 50 35 Mummert and Sterner 10
YO   809 YO   809 W 300MRBG NAD27 39 76 30 200 32 82 160 10 Cekovich 20 0.16
YO   810 YO   810 W 300MRBG NAD27 39 76 150 30 20 Cekovich 1
YO   811 YO   811 6.7 W 300MRBG NAD27 39 76 21 175 21 62 80 10 10 Cekovich 5 0.04
YO SP29 AX SP29 6.09 264 W 300MRBG NAD27 39 76
YO SP30 AX SP30 W 300MRBG NAD27 39 76
YO SP31 AX SP31 W 300MRBG NAD27 39 76
YO SP32 AX SP32 W 300MRBG NAD27 39 76
YO SP33 AX SP33 6.88 197 W 300MRBG NAD27 39 76
YO SP34 AX SP34 W 300MRBG NAD27 39 76
YO SP35 AX SP35 S 300MRBG NAD27 39 76
YO SP36 AX SP36 W 300MRBG QUARTZ NAD27 39 76
YO SP37 AX SP37 300MRBG NAD27 39 76
YO 1225 AX-1225 15.32 6.26 109 S 300MRBG NAD83 39 76 42 100 52 65 71 15 38 Reichart 30
YO 1226 AX-1231 27.79 W 300MRBG NAD83 39 76 60 320 110 48 Kohler 2
YO 1227 AX-1232 13 11.62 405 S 300MRBG NAD83 39 76 70 300 110 13 65 Fogles Well 4 0.06
YO 1228 AX-1233 6.64 W 300MRBG NAD83 39 76 35 100 46 62 6 31 Reichart 45
YO 1229 AX-1234 69.8 H 300MRBG NAD83 39 76 63 300 68 5 Reichart 0.25
YO 1230 AX-1235 36.9 5.76 1722 S 300MRBG NAD83 39 76 59 277 68 67 58 Westm. Rotary 1.5 0.02
YO 1231 AX-1236 24.57 6.16 302 H 300MRBG SLATE NAD83 39 76 61 228 71 40 60 Westm. Rotary 3 0.04
YO 1232 AX-1237 24.24 W 300MRBG NAD83 39 76 75 360 85 68 Kohler 1
YO 1233 AX-1238 37.51 5.93 218 S 300MRBG NAD83 39 76
YO 1234 AX-1239 32.87 6.81 220 W 300MRBG NAD83 39 76
YO 1235 AX-1240 5.83 167 H 300MRBG NAD83 39 76 80 320 103 187 210 293 30 72 Reider 15 0.09
YO 1236 AX-1241 76.55 6.96 235 S 300MRBG NAD83 39 76 63 400 292 341 57 5 Reichart 4
YO 1237 AX-1242 53.35 5.91 155 H 300MRBG NAD83 39 76 63 200 71 82 51 48 Reichart 4
YO 1238 AX-1243 46.5 6.34 282 H 300MRBG NAD83 39 76 75 140 80 125 60 68 Reider 6 0.09
YO 1239 AX-1244 22.18 S 300MRBG NAD83 39 76 21 300 84 20 11 Reichart 2
YO 1240 AX-1245 123.67 H 300MRBG NAD83 39 76 18.5 400 43 28 7 Reichart 0.375
YO 1241 AX-1248 37.8 6.13 364 S 300MRBG NAD83 39 76 21 400 88 231 71 3 Reichart 1
YO 1242 AX-1264 39.86 S 300MRBG NAD83 39 76 60 200 39.86 Eichelberger 11
YO 1243 AX-1267 5.9 7.36 200 W 300MRBG QUARTZ NAD83 39 76 21 200 39 44 4 12 Reichart 20
YO 1244 AX-1268 35.9 7.57 135 H 300MRBG NAD83 39 76 42 200 87 105 35 14 Reichart
YO 1245 AX-1269 59.15 7.28 96 S 300MRBG QUARTZ? NAD83 39 76 21 175 73 98 121 62 5 Reichart 6
YO 1246 AX-1272 13.85 V 300MRBG NAD83 39 76 Reichart
YO 1247 AX-1273 11.95 V 300MRBG NAD83 39 76 Reichart
YO 1248 AX-1275 48.3 6.36 163 H 300MRBG NAD83 39 76
YO 1249 AX-1276 33.58 7.2 253 S 300MRBG NAD83 39 76 51 300 66 151 186 68 45 Jackson 3 0.01
YO 1250 AX-1277 36.3 6.68 189 S 300MRBG NAD83 39 76 21 200 54 133 170 30 1 Reichart 8.5
YO 1251 AX-1278 36.2 W 300MRBG NAD83 39 76 21 250 2 Reichart 3
YO 1252 AX-1279 65.8 6.26 126 H 300MRBG NAD83 39 76 42 175 89 98 141 54 29 Reichart 5
YO 1253 AX-1280 14 6.69 370 S 377HRPR NAD83 39 76 30 102 25 50 75 12 25 Gatrick 10 0.19
YO 1254 AX-1282 21.5 S 300MRBG SLATE NAD83 39 76 320 2.5
YO 1255 AX-1285 57.88 S 300MRBG NAD83 39 76 30 80 55 30 30 Ruhlman 8 0.2
YO 1256 AX-1289 23.1 6.41 293 S 300MRBG NAD83 39 76 29 125 41 60 77 23 6 Reichart 12
YO 1257 AX-1290 32.01 S 300MRBG NAD83 39 76 40 200 65 127 168 26 Kohler 20
YO 1258 AX-1292 57 S 377HRPR NAD83 39 76 21 150 129 45 11 Reichart 20
YO 1259 AX-1294 25.25 S 300MRBG QUARTZ NAD83 39 76 40 340 75 30 29 Kohler 1
YO 1260 AX-1307 50.2 6.51 163 S 300MRBG NAD83 39 76 22 300 69 173 37 11 Reichart 2
YO 1261 AX-1310 41.1 6.44 150 W 300MRBG NAD83 39 76 140 280 260 50 120 Adams 15 0.3
YO 1262 AX-1311 89.25 7.22 213 S 300MRBG NAD83 39 76
YO 1263 AX-1312 30.5 S 300MRBG NAD83 39 76
YO 1264 AX-1314 34 6.12 87 H 300MRBG SLATE NAD83 39 76
YO 1265 AX-1315 29.29 6.16 215 S 300MRBG NAD83 39 76
YO 1266 AX-1316 47.42 6.34 S 300MRBG NAD83 39 76 40 200 5
YO 1267 AX-1317 18.9 7.66 236 S 300MRBG SLATE/QUARTZ NAD83 39 76
YO 1268 AX-1318 34.71 6.97 227 S 300MRBG NAD83 39 76 300 3
YO 1269 AX-1319 43.19 5.83 177 W 300MRBG NAD83 39 76
YO 1270 AX-1322 29.3 6.73 161 S 300MRBG NAD83 39 76
YO 1271 AX-1323 2 W 377HRPR NAD83 39 76
YO 1272 AX-1324 23.35 6.5 99 S 300MRBG NAD83 39 76
YO 1273 AX-1327 11.88 6.64 170 S 300MRBG NAD83 39 76 21 350 35 50 12 12 Reichart 1.125
YO 1274 AX-1329 40.97 6.66 80 H 300MRBG NAD83 39 76
YO 1275 AX-1331 43.88 6.15 284 W 300MRBG NAD83 39 76
YO 1277 AX-1335 22.75 6.24 83 S 300MRBG NAD83 39 76 42 300 58 170 37 Reichart 4.6
YO 1278 AX-1336 6.67 340 w 300MRBG NAD83 39 76
YO 1279 AX-1337 4.82 7.08 219 W 300MRBG NAD83 39 76 328 0.5
YO 1280 AX-1338 41.47 H 300MRBG NAD83 39 76
YO 1281 AX-1340 38.7 6.98 172 S 300MRBG NAD83 39 76
YO 1282 AX-1341 9.85 6.27 112 S 300MRBG NAD83 39 76 42 200 47 156 15 4 Reichart 6
YO 1283 AX-1344 32.53 6.54 192 H 300MRBG QUARTZ NAD83 39 76 52 300 148 229 20 47 Jackson 3 0.01
YO 1284 AX-1345 36.04 W 300MRBG QUARTZ NAD83 39 76 96 300 180 248 58 85 Krimbine 3 0.01
YO 1285 AX-1347 27 6.77 228 W 300MRBG NAD83 39 76
YO 1286 AX-1349 33 S 300MRBG NAD83 39 76 42 400 72 219 34 9 Reichart 1.8
YO 1287 AX-1350 60.73 7.78 153 S 300MRBG NAD83 39 76
YO 1288 AX-1353 50.6 H 300MRBG QUARTZ NAD83 39 76
YO 1289 AX-1368 6.92 127 H 377ANTM NAD83 39 76
YO 1290 AX-1373 15.49 W 300MRBG NAD83 39 76
YO 1291 AX-1379 23 S 300MRBG SLATE NAD83 39 76 26 3
YO 1292 AX-1380 7.05 153 S 300MRBG NAD83 39 76 237
YO 1293 AX-1382 35.1 S 300MRBG NAD83 39 76
YO 1294 AX-1385 14.85 6.15 145 W 300MRBG NAD83 39 76
YO 1295 AX-1386 5.45 W 300MRBG NAD83 39 76 300 1
YO 1296 AX-1387 34.98 W 300MRBG NAD83 39 76
YO 1297 AX-1388 51.1 5.87 248 W 300MRBG NAD83 39 76 40 300 50 34 Kohler 1
YO 1298 AX-1389 76.45 S 300MRBG NAD83 39 76 70 297 30 Bragg 1.5
YO 1299 AX-1459 32.3 S 300MRBG NAD83 39 76 40 400 36.1 Eichelberger 1.02
YO 1300 AX-1460 35.1 S 300MRBG NAD83 39 76 60 420 37.7 Eichelberger 0.6
YO 1301 AX-1461 35.8 S 300MRBG NAD83 39 76 40 400 36.6 Eichelberger 1.4
YO 1302 AX-1462 45.95 S 300MRBG NAD83 39 76 60 340 47.45 Eichelberger 1.7
YO 1303 AX-1226 H 300MRBG QUARTZ NAD83 39 76 50 180 60 151 50 45 10 0.08
YO 1304 AX-1227 S 300MRBG NAD83 39 76 38 140 60 110 60 30 Reichart 15 0.25
YO 1305 AX-1246 H 300MRBG NAD83 39 76 25 255 34 180 42 21 Campbell 3 0.03
YO 1306 AX-1247 S 300MRBG NAD83 39 76 21 300 97 114 135 75 2 Reichart 2
YO 1307 AX-1249 S 300MRBG NAD83 39 76 21 200 61 77 160 53 5 Reichart 12
YO 1308 AX-1250 H 300MRBG NAD83 39 76 21 300 91 271 75 7 Reichart 20
YO 1309 AX-1251 H 300MRBG NAD83 39 76 21 150 69 91 108 50 16 Reichart 20
YO 1310 AX-1252 H 300MRBG NAD83 39 76 21 150 72 84 97 124 60 12 Reichart 20
YO 1311 AX-1253 H 300MRBG NAD83 39 76 21 175 39 87 121 29 5 Reichart 6
YO 1312 AX-1254 H 300MRBG NAD83 39 76 84 200 55 90 150 45 55 Eichelberger 9 0.07
YO 1313 AX-1255 H 300MRBG NAD83 39 76 21 450 62 81 37 12 Reichart 1
YO 1314 AX-1256 S 300MRBG NAD83 39 76 21 300 52 73 118 30 6 Reichart 3
YO 1315 AX-1257 H 300MRBG NAD83 39 76 21 300 43 61 89 32 7 Reichart 2.5
YO 1316 AX-1258 S 300MRBG NAD83 39 76 20 125 65 30 20 Dale A. Thomas 12 0.17
YO 1317 AX-1259 S 300MRBG NAD83 39 76 21 450 33 220 30 5 Reichart 3
YO 1318 AX-1260 S 300MRBG NAD83 39 76 21 125 30 39 84 15 9 Reichart 10
YO 1319 AX-1261 W 300MRBG NAD83 39 76 42 400 64 92 368 44 29 Reichart 1
YO 1320 AX-1262 S 300MRBG NAD83 39 76 80 450 60 210 60 65 Eichelberger 0.5 0
YO 1321 AX-1263 S 300MRBG NAD83 39 76 110 65 43 40 Dale A. Thomas 15 1.25
YO 1322 AX-1265 W 300MRBG SLATE NAD83 39 76 21 300 119 40 3 Reichart 0.375
YO 1323 AX-1266 H 300MRBG NAD83 39 76 30 240 65 110 20 40 Ruhlman 1 0
YO 1324 AX-1308 W 300MRBG NAD83 39 76 40 200 46 53 135 24 22 Reichart 8.5
YO 1325 AX-1394 W 300MRBG NAD83 39 76 76 300 96 106 267 47 31 Reichart 5
YO 1326 AX-1283 S 300MRBG NAD83 39 76 21 425 63 95 56 6 Reichart 1
YO 1327 AX-1420 S 300MRBG NAD83 39 76 44 160 80 90 120 40 35 Alexander 12 0.4
YO 1328 AX-1421 S 300MRBG NAD83 39 76 60 140 70 110 40 55 Reider 30 0.3
YO 1329 AX-1422 S 300MRBG NAD83 39 76 140 180 145 60 100 Reider 12 0.12
YO 1330 AX-1423 H 300MRBG QUARTZ NAD83 39 76 73 150 76 84 115 45 51 Reichart 7.5
AX-1228 S 300MRBG NAD83 39 76 40 300 70 42 30 Kohler 2
AX-1229 S 300MRBG NAD83 39 76 21 100 33 40 60 25 10 Reichart 12
AX-1230 S 300MRBG NAD83 39 76 21 75 50 10 11 Reichart 10
AX-1270 S 300MRBG NAD83 39 76 40 140 70 90 20 20 Alexander 20 0.5
AX-1271 W 300MRBG NAD83 39 76 42 300 54 86 19 9 Reichart 2
AX-1274 refused inspection NAD83 39 76
AX-1281 NAD27 ~39 76 42 300 61 84 42 12 Reichart 2
AX-1284 S 300MRBG NAD83 39 76 21 275 91 136 3 Reichart 0.75
AX-1286 S 300MRBG NAD83 39 76 40 220 65 123 50 32 Kohler 5
AX-1287 W 300MRBG NAD83 39 76 63 350 81 7 Reichart 0.25
AX-1288 V 300MRBG NAD83 39 76 21 300 71 212 3 4 Reichart 2
AX-1291 V 300MRBG NAD83 39 76 42 250 127 231 23 Kohler 4
AX-1293 S 300MRBG NAD83 39 76 40 500 55 30 Kohler 0.75
AX-1295 H 377HRPR NAD83 39 76 42 250 72 196 40 3 Reichart 10
AX-1296 S 377HRPR NAD83 39 76 42 300 51 59 186 268 10 15 Reichart 7.5
AX-1298 S 377HRPR NAD83 39 76 21 250 38 161 9 Reichart 3.5
AX-1299 S 300MRBG NAD83 39 76 21 200 66 83 56 3 Reichart 6
AX-1300 S 300MRBG NAD83 39 76 21 300 63 122 50 6 Reichart 1.5
AX-1301 S 300MRBG NAD83 39 76 60 420 130 52 Kohler 0.5
AX-1302 S 300MRBG NAD83 39 76 60 420 140 50 Kohler 0.5
AX-1303 W 300MRBG NAD83 39 76 47 350 65 263 13 43 Reichart 1
AX-1304 S 300MRBG NAD83 39 76 21 425 64 111 25 9 Reichart 1
AX-1305 V 300MRBG NAD83 39 76 40 175 52 93 32 Kohler 5
AX-1306 W 300MRBG NAD83 39 76 21 150 50 110 4 5 Reichart 10
AX-1309 NAD27 ~39 76 42 250 85 107 190 25 16 Reichart 5
AX-1313 H 300MRBG NAD83 39 76 46
AX-1320 H 300MRBG NAD83 39 76
AX-1321 NAD27 ~39 76 42 350 52 35 5 Reichart 1
AX-1325 NAD27 ~39 76 21 300 69 48 16 Reichart 1.5
AX-1326 NAD27 ~39 76 21 425 70 198 61 14 Reichart 1
AX-1328 H 300MRBG QUARTZ NAD83 39 76 20 110
AX-1330 NAD27 ~39 76 42 600 68 24 Reichart 0.38
AX-1332 NAD83 39 79
AX-1333 couldn't locate S 300MRBG NAD83 39 76 40
AX-1339 NAD83 39 76
AX-1342 NAD83 39 76
AX-1343 NAD83 39 76
AX-1346 NAD83 39 76
AX-1348 NAD83 39 76
AX-1351 NAD83 39 76
AX-1352 NAD83 39 76
AX-1354 W 300MRBG SLATE NAD83 39 76 21 200 46 52 9 Reichart 2
AX-1355 W 300MRBG SLATE NAD83 39 76 21 200 75 12 Reichart 10
AX-1356 W 300MRBG NAD83 39 76 200 0.14 31 Eichlebergers 60 0.41
AX-1357 W 300MRBG NAD83 39 76 100 41 56 67 38 18 Eichlebergers 40 10
AX-1358 W 300MRBG NAD83 39 76 200 0.38 29 Eichlebergers 17 0.16
AX-1359 NAD27 ~39 76 42 450 64 12 8 Reichart
AX-1360 NAD27 ~39 76 21 200 25 37 8 3 Reichart 4.5
AX-1361 NAD27 ~39 76 21 300 84 203 29 5 Reichart 4
AX-1362 NAD27 ~39 76 21 125 47 73 90 25 12 Reichart 20
AX-1363 NAD27 ~39 76 20 100 80 90 30 10 Kohler
AX-1364 NAD27 ~39 76 20 320 36 25 14 Kohler 2.5
AX-1365 NAD27 ~39 76 21 125 70 10 Alexander 20 0.67
AX-1366 NAD27 ~39 76 20 145 60 80 J & J 8
AX-1367 NAD27 ~39 76 21 150 83 106 117 22 15 Reichart
AX-1369 NAD83 39 76
AX-1370 NAD27 ~39 76 20 145 60 80 J & J 8
AX-1371 NAD27 ~39 76 35 168 57 76 138 57 27 Deatrick 8 0.18
AX-1372 NAD83 39 7
AX-1374 NAD27 ~39 76 42 200 45 26 2 Reichart 5
AX-1375 NAD27 ~39 76 44 200 140 160 60 10 Alexander 8 0.2
AX-1376 NAD27 ~39 76 21 125 70 10 Alexander 20 0.67
AX-1377 NAD83 39 76
AX-1378 NAD83 394 76
AX-1381 NAD83 39 76
AX-1383 NAD27 ~39 76 42 150 54 98 122 25 25 Reichart 12
AX-1384 NAD27 ~39 76 22 160 90 147 60 15 Alexander 10 0.2
AX-1390 S 300MRBG NAD83 39 76 21 250 23 9 7 Reichart 3
AX-1392 V 300MRBG NAD83 39 76 20 100 35 60 5 15 Reider 35 0.38
AX-1393 NAD27 76 60 500 68 120 54 Kohler 1
AX-1395 NAD27 ~39 76 40 250 55 79 50 35 Eichelberger 3 0.02
AX-1397 NAD27 ~39 76 90 150 99 135 41 16 W. Funt 7 0.05
AX-1398 NAD27 ~39 76 60 400 75 53 Kohler 1
AX-1399 NAD27 ~39 76 21 195 67 133 161 29 4 Reichart 8
AX-1400 NAD27 ~39 76 23 125 70 86 57 4 Reichart 20
AX-1401 NAD27 ~39 76 38 110 61 95 50 37 Dale A. Thomas 25 0.31
AX-1402 NAD27 ~39 76 21 125 36 48 23 2 Reichart 10
AX-1403 NAD27 ~39 76 21 200 54 91 42 12 Reichart 5
AX-1404 NAD27 ~39 76 200 30 Alexander 1
AX-1405 NAD27 ~39 76 21 250 31 47 28 3 Reichart 6
AX-1406 NAD27 ~39 76 42 200 64 73 147 169 50 16 Reichart 12
AX-1407 NAD27 ~39 76 42 300 45 170 31 5 Reichart 1
AX-1408 NAD27 ~39 76 27.5 150 85 121 40 23 Reichart 12
AX-1409 NAD27 ~39 76 55 125 63 81 94 27 17 Reichart 20
AX-1410 NAD27 ~39 76 28 175 75 104 147 25 25 Reichart 12
AX-1411 NAD27 ~39 76 42 350 79 203 11 Reichart 11
AX-1412 NAD27 ~39 76 63 200 76 60 4 Reichart 4
AX-1416 W 300MRBG NAD27 39 76 60 175 117 20 0.25 0
AX-1417 W 300MRBG NAD27 39 76 52 300 60 108 150 245 40 5 0.05
AX-1418 S 300MRBG NAD27 39 76 8.5 150 15 2
AX-1425 S 300MRBG SLATE NAD83 39 76 180 107 115 130 35 17 Eichelberger 50
AX-1427 V 300MRBG NAD83 39 76 150 45 90 25 8 Eichelberger 12
AX-1428 42 350 40 Reichart 1
AX-1429 51 100 50 Simon 10
AX-1430 53 177 48 Simon 2.5
AX-1431 42 175 59 167 4 Reichart 10
AX-1432 42 200 43 Reichart 8.5
AX-1433 40 300 28 Eichelberger 3
AX-1434 42 200 39 Reider 12
AX-1435 S 300MRBG QUARTZ NAD83 39 76 240 103 80 4 Eichelberger 4
AX-1436 43 200 40 Reider 15
AX-1437 60 110 4 Eichelberger 18
AX-1438 40 300 22 Eichelberger 6
AX-1439 45 175 45 Eichelberger 6
AX-1440 40 300 28 Eichelberger 3
AX-1441 40 300 28 Eichelberger 3
AX-1442 S 300MRBG QUARTZ NAD83 39 76 180 118 150 45 90 Eichelberger 50
AX-1443 S 300MRBG NAD83 39 76 200 110 145 85 90 Eichelberger 30
AX-1444 NAD27 ~39 76 55 200 70 72 38 13 Reichart 8.5
AX-1445 S 300MRBG NAD83 39 76 61 175 30 Eichelberger 20
AX-1446 42 400 50 Reichart 1.5
AX-1447 42 200 35 Reichart 8.5
AX-1448 61 200 55 Eichelberger 7
AX-1449 240 Eichelberger 0
AX-1450 70 120 Eichelberger 40
AX-1451 47 200 35 Eichelberger 15
AX-1452 40 150 Eichelberger 15.9
AX-1453 45 400 35 Reichart 1.3
AX-1454 41 200 47 82 40 18 Eichelberger 10
AX-1455 53 200 62 Reider 20
AX-1456 45 300 60 Reider 16
AX-1457 40 180 33 Reider 20
AX-1464 NAD83 ~39 76 42 400 122 33 Reichart 1.25
AX-1465 42 305 35 Riechart 0.5
AX-1466 58 305 15 Riechart 2
AX-1467 60 90 62 78 27 43 Eichelberger 100
AX-1468 60 300 68 121 216 25 Eichelberger 6.4
AX-1469 75
AX-1470 40
AX-1471 S 300MRBG NAD83 39 76 200 56 97 179 38 14 Eichelberger 38
AX-1472 S 300MRBG NAD83 39 76 300 190 280 50 90 Eichelberger 6
AX-1473 100 300 56 Eichelberger 6.5
AX-1474 S 300MRBG NAD83 39 76 240 87 280 13 27 Eichelberger 6
AX-1475 400 70 160 210 100 14 Eichelberger 1.5
AX-1476 40 400 22 Eichelberger 1.1
AX-1477 42 200 7 Reichart 8.5
AX-1478 Riechart
AX-1479 Reichart
AX-1480 Reichart
AX-1481 Eichelberger
AX-1482 Eichelberger
AX-1483 Eichelberger
AX-1484 NAD27 ~39 76 21 125 54 81 30 7 Reichart 20
AX-1485 NAD27 ~39 76 21 300 130 142 85 5 Reichart 2
AX-1486 NAD27 ~39 76 21 200 70 163 30 6 Reichart 20
AX-1487 NAD27 ~39 76 58 155 80 105 45 55 Campbell 8
AX-1488 NAD27 ~39 76 20 205 50 180 J & J 1
AX-1489 NAD27 ~39 76 73 300 240 260 30 69 Kohler 10
AX-1490 42 200 60 112 36 29 Reichart 10
AX-1493 176
AX-1497 NAD27 ~39 76 20 300 36 65 10 Kohler 2
AX-1498 NAD27 ~39 76 60 200 115 175 52 Kohler 15
AX-1499 NAD27 ~39 76 20 220 130 205 16 Kohler 8
AX-1500 NAD27 ~39 76 42 125 46 69 93 31 4 Reichart 15
AX-1501 NAD27 ~39 76 42 305 100 195 230 41 39 Campbell 8 0.07
AX-1502 NAD27 ~39 765 21 125 43 61 93 38 7 Reichart 10
AX-1503 20 145 60 95 120 J & J 7
AX-1504 NAD27 ~39 76 150 180 155 160 60 145 Reider 40 0.33
AX-1505 NAD27 ~39 76 105 175 117 126 160 36 90 Reichart 10
AX-1506 NAD27 ~39 76 80 200 180 70 60 Adams 30 0.6
AX-1507 NAD27 ~39 76 44 125 71 96 30 29 Reichart 60
AX-1508 NAD27 ~39 76 34 240 90 190 30 20 Alexander 6 0.03
AX-1509 NAD27 ~39 76 80 120 90 110 115 45 75 Reider 100
AX-1510 NAD27 ~39 76 63 305 96 106 277 25 5 Reichart 3
AX-1511 NAD27 ~39 76 42 125 56 85 103 56 31 Reichart 60
AX-1512 NAD27 ~39 76 84 300 94 166 34 14 Reichart 4
AX-1513 NAD27 ~39 76 42 125 64 91 21 37 Reichart 20
AX-1514 NAD27 ~39 76 40 250 87 215 26 Kohler 2
AX-1515 NAD27 ~39 76 42 175 81 117 134 45 18 Reichart 12
AX-1516 NAD27 ~39 76 56 200 105 123 50 Reider 12
AX-1517 NAD27 ~39 76 20 160 55 127 30 16 Kohler 10
AX-1518 NAD27 ~39 76 20 180 40 60 30 12 Kohler 5
AX-1519 NAD27 ~39 76 26 100 48 52 61 16 22 Reichart 60
AX-1520 NAD27 ~39 76 20 340 58 260 30 11 Kohler 1
AX-1521 NAD27 ~39 76 20 160 55 135 30 11 Kohler 10
AX-1522 NAD27 ~394 76 20 120 55 76 30 11 Kohler 10
AX-1523 NAD27 ~39 76 21 150 38 66 113 38 2 Reichart 15
AX-1524 NAD27 76 86 150 94 103 114 45 72 Reichart 15
AX-1525 NAD27 ~39 76 40 100 65 77 89 Kohler 25
AX-1526 NAD27 ~39 76 36 125 67 88 105 53 30 Reichart 15
AX-1527 NAD27 ~39 76 42 200 47 61 35 9 Reichart 8.5
AX-1528 NAD27 ~39 76 21 350 139 278 4 12 Reichart 2
AX-1529 NAD27 ~39 76 42 300 60 124 30 19 Reichart 3.5
AX-1530 NAD27 ~39 76 21 125 36 48 16 4 Reichart 20
AX-1531 NAD27 ~39 76 27 160 120 140 60 20 Alexander 3 0.08
AX-1532 NAD27 ~39 76 60 160 105 138 52 Kohler 15
AX-1533 NAD27 ~39 76 42 305 66 35 5 Reichart 0.5
AX-1534 NAD27 ~39 76 58 305 60 15 4 Reichart 2
AX-1535 NAD27 ~39 76 42 400 44 321 50 14 Reichart 1.5
AX-1536 NAD27 ~39 76 45 400 69 320 35 14 Reichart 1.3
AX-1537 NAD27 ~39 76 21 300 24 110 16 6 Reichart 1
AX-1538 NAD27 ~39 76 21 125 75 83 95 45 11 Reichart 60
AX-1539 NAD27 ~39 76 40 260 80 32 Kohler 3
AX-1540 NAD27 ~39 76 21 200 65 117 24 11 Reichart 4
AX-1541 NAD27 ~39 76 21 300 91 223 23 4 Reichart 1
AX-1542 NAD27 ~39 76 21 250 65 112 221 48 11 Reichart 3
AX-1543 NAD27 ~39 76 21 250 94 35 16 Reichart 0.5
AX-1544 NAD27 ~39 76 42 350 94 112 35 37 Reichart 2
AX-1545 NAD27 ~39 76 40 400 120 33 Kohler 1
AX-1546 NAD27 ~39 76 60 400 105 55 Kohler 1.5
AX-1547 NAD27 ~39 76 60 400 95 54 Kohler 1
AX-1548 NAD27 ~39 76 60 300 120 275 52 Kohler 8
AX-1549 NAD27 ~39 76 42 300 60 104 20 11 Reichart 4
AX-1550 NAD27 ~39 76 40 400 70 32 Kohler 1
AX-1551 NAD27 ~39 76 30 400 140 24 Kohler 2
AX-1552 NAD27 ~39 76 40 300 70 32 Kohler 2
AX-1553 NAD27 ~39 76 50 300 105 280 43 Kohler 4
AX-1554 NAD27 ~39 76 20 405 80 200 J & J 1.25
AX-1555 NAD27 ~39 76 42 300 60 104 20 11 Reichart 4
AX-1556 NAD27 ~39 76 20 405 50 380 J & J 2
AX-1557 NAD27 ~39 76 20 305 70 180 250 J & J 3
AX-1558 NAD27 ~39 76 20 405 60 180 J & J  
AX-1559 NAD27 ~39 76 22 350 47 53 35 18 Reichart 1.5
AX-1560 NAD27 ~39 76 21 200 50 59 25 10 Reichart 5
AX-1561 NAD27 ~39 76 29 500 126 50 12 Reichart 1
AX-1562 NAD27 ~39 76 63 200 75 83 173 41 48 Reichart 10
AX-1563 NAD27 ~39 76 42 200 57 79 189 32 Reichart 6
AX-1564 NAD27 ~39 76 42 300 57 132 52 13 Reichart 5.5
AX-1565 NAD27 ~39 76 19 275 85 132 244 28 6 Reichart 3
AX-1566 NAD27 ~39 76 42 300 47 98 31 14 Reichart 4.5
AX-1567 NAD27 ~39 76 42 200 58 110 43 11 Reichart 8.5
AX-1568 NAD27 ~39 76 42 350 45 115 40 13 Reichart 1
AX-1569 NAD27 ~39 76 40 400 100 300 40 20 Alexander 0.75 0.01
AX-1570 NAD27 ~39 76 26 110 60 95 J & J 9
AX-1571 NAD27 ~39 76 42 300 69 114 50 14 Reichart 5.5
AX-1572 NAD27 ~39 76 42 400 61 68 54 12 Reichart 2.2
AX-1573 NAD27 ~39 76 60 260 78 48 Kohler 4
AX-1574 NAD27 ~39 76 20 200 100 173 185 Kohler 20
AX-1575 NAD27 ~39 76 20 205 75 120 175 J & J 5
AX-1576 NAD27 ~39 76 80 200 90 116 165 60 70 Westbook 10
AX-1577 NAD27 ~39 76 42 300 31 62 31 Kohler 2
AX-1578 NAD27 ~39 76 21 300 90 135 203 31 7 Reichart 3
AX-1579 NAD27 ~39 76 40 300 47 32 Kohler 2
AX-1580 NAD27 ~39 76 42 250 55 62 38 5 Reichart 5
AX-1581 NAD27 ~39 76 21 325 35 44 302 14 12 Reichart 10
AX-1582 NAD27 ~39 76 21 100 43 69 27 7 Reichart 20
AX-1583 NAD27 ~39 76 21 300 111 127 25 2 Reichart 2
AX-1584 NAD27 ~39 76 20 320 36 25 14 Kohler 2.5
AX-1585 NAD27 ~39 76 42 200 58 100 136 40 10 Reichart 4
AX-1586 NAD27 ~39 76 20 205 J & J 2
AX-1587 NAD27 ~39 76 20 205 115 J & J 0.75
AX-1588 NAD27 ~394 76 29 200 42 60 130 27 Reider 12
AX-1589 NAD27 ~39 76 42 400 58 124 9 Reichart 0.75
AX-1590 NAD27 ~39 76 42 200 124 146 22 29 Reichart 5
AX-1591 NAD27 ~39 76 21 150 82 114 123 30 12 Reichart 20
AX-1592 NAD27 ~39 76 21 175 34 48 6 3 Reichart 6
AX-1593 NAD27 ~39 76 21 125 69 84 90 65 11 Reichart 15
AX-1594 NAD27 ~39 76 20 165 40 75 135 J & J 8
AX-1595 NAD27 ~39 76 20 165 75 90 140 J & J 9
AX-1596 NAD27 ~39 76 20 300 80 14 Kohler 1.5
AX-1597 NAD27 ~39 76 20 150 80 125 20 20 Ruhlman 28
AX-1598 NAD27 ~39 76 40 400 93 300 25 Eichelbergers 0.75 0.01
AX-1599 NAD27 ~39 76 43 200 72 89 40 19 Reider 15 0.13
AX-1600 NAD27 ~39 76 42 400 282 78 4 Reichart 3
AX-1601 NAD27 ~39 76 42 200 68 123 39 17 Reider 12 0.11
AX-1602 NAD27 ~39 76 21 400 80 120 20 11 Reichart 1
AX-1603 NAD27 ~39 76 20 220 130 205 16 Kohler 8
AX-1604 NAD27 ~39 76 63 200 65 106 28 13 Reichart 8.5
AX-1605 NAD27 ~39 76 58 300 63 116 269 42 5 Reichart 5
AX-1606 NAD27 ~39 76 42 200 86 63 14 Reichart 8.5
AX-1607 NAD27 ~39 76 63 250 80 240 56 4 Reichart 8.5
AX-1608 NAD27 ~39 76 68 250 81 236 62 4 Reichart 4   
AX-1609 NAD27 ~39 76 42 350 110 206 60 11 Reichart 1.7
AX-1610 NAD27 ~39 76 100 300 180 60 15 Reichart 6.5
AX-1611 NAD27 ~394 76 84 300 93 224 46 12 Reichart 4
AX-1612 NAD27 ~39 76 42 200 60 94 145 50 13 Reichart 8.5
AX-1613 NAD27 ~39 76 42 300 71 114 49 12 Reichart 2
AX-1614 W 300MRBG QUARTZ NAD83 39 76 21 200 42 61 117 9 Reichart 6
AX-1615 W 300MRBG QUARTZ NAD83 39 76 42 200 60 5 Reichart
AX-1616 W 300MRBG SLATE NAD83 39 76 42 200 45 60 110 4 Reichart 20
AX-1617 W 300MRBG SLATE NAD83 39 76 69 200 123 12 Reichart 2
AX-1618 S 300MRBG QUARTZ NAD83 39 76 42 200 54 12 Reichart 5
AX-1619 S 300MRBG QUARTZ NAD83 39 76 21 200 45 50 5 Reichart 3
AX-1620 NAD83 39 76 21 200 35 6 Reichart 0.25
AX-1621 NAD83 39 76 21 200 35 68 6 Reichart 1
AX-1622 W 300MRBG QUARTZ NAD83 39 76 42 200 136 141 192 11 Reichart 60
AX-1623 W 300MRBG QUARTZ NAD83 39 76 42 200 113 13 Reichart 0.25
AX-1624 W 300MRBG NAD83 39 76 42 200 48 16 Reichart 5
AX-1625 W 300MRBG NAD83 39 76 42 200 46 68 110 14 Reichart 30
AX-1626 W 300MRBG NAD83 39 76 21 200 36 52 58 94 4 Reichart 60
AX-1627 S 300MRBG SLATE NAD83 39 76 21 200 43 5 Reichart 5
AX-1628 S 300MRBG SLATE NAD83 39 76 21 200 52 124 136 140 147 9 Reichart 30
AX-1629 H 300MRBG NAD83 39 76 42 200 45 6 Reichart 10
AX-1630 H 300MRBG NAD83 39 76 47 200 49 6 Reichart 10
AX-1631 S 300MRBG NAD83 39 76 55 200 55 60 6 Reichart 0.1
AX-1632 S 300MRBG NAD83 39 76 21 200 38 60 7 Reichart 4
AX-1633 W 300MRBG NAD83 39 76 51 300 178 251 78 45 Jackson 4 0.02
AX-1634 W 300MRBG NAD83 39 76 21 200 34 78 88 10 Reichart 5
AX-1635 W 300MRBG NAD83 39 76 63 200 72 113 14 Reichart 3
AX-1636 S 300MRBG QUARTZ? NAD83 39 76 21 200 50 100 5 Reichart 10
AX-1637 S 300MRBG QUARTZ? NAD83 39 76 42 200 43 167 14 Reichart 0.5
AX-1638 W 300MRBG NAD83 39 76 21 200 25 40 5 Reichart 10
AX-1639 W 300MRBG NAD83 39 76 21 200 32 44 9 Reichart 2.5

 

| Home | Educational Services | News Update | Classes/Fieldtrips |
| Projects & Upcoming Presentations | Resume | Publications | Dino Article |
| Maps | PA Dinosaurs | Selected Locations | Links | York County Tour |
| Delta Slate Tour |Codorus | References | Book |